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Abstract 

In the present paper we use the Markov chain approach to study two reliability systems that have recently attracted special interest, namely: Consecutively-Connected Systems and Multistate Consecutively-Connected Systems. More precisely, a proper state space and finite Markov chain is introduced to describe each of these systems and subsequently exact formulas are derived for their reliability.

Περίληψη
Στην παρούσα εργασία μελετάμε την αξιοπιστία δυο συστημάτων για τα οποία υπάρχει έντονο ερευνητικό ενδιαφέρον και ευρύ φάσμα εφαρμογών: Συνεχόμενα - Συνδεδεμένα Συστήματα (CCS) και Συνεχόμενα - Συνδεδεμένα Συστήματα πολλών καταστάσεων (MCCS). Συγκεκριμένα, περιγράφουμε καθένα από τα συστήματα αυτά με κατάλληλες Μαρκοβιανές αλυσίδες , τις οποίες ορίζουμε, και δίνουμε ακριβείς τύπους για τον υπολογισμό της αξιοπιστίας τους
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Results useful to: Reliability analysts and designers

1.
Introduction

The Consecutively-Connected Systems can be applied in the design of electronic devices, model spacecraft relay stations, telecommunication and oil pipeline systems, computer networks and vacuum systems in accelerators. 


The first system in this category was introduced by Kontoleon [2] and it is commonly known as consecutive-k-out-of-n: F system. It consists of an ordered sequence of n s-independent components; all of them have same transmitting capability k. Also, each component and the system are either working or failed. The system fails iff at least k consecutive components fail. For example, a telecommunications system with n relay stations, where each working station can transmit a signal to the next k stations, may be modelled as a consecutive k-out-of-n: F system. The consecutive-k-out-of-n: F system has two limitations which limit to a significant extent the range of its application 

1.
All components have the same transmitting capability k 

2.
Each component has only two states, i.e. working-failed.


In order to overcome not only the above but also other limitations, a lot of modifications, extensions and generalizations have been made as far as the principle of operation (or breakdown policy) and the arrangement of its componets are concerned (a review concerning the above can found at Papastavridis & Koutras [4])


Shanthikumar [5] extended the consecutive k-out-of-n: F system to the Consecutively-Connected Systems (CCS) whose components do not have the same transmitting capability, whereas Hwang and Yao [1] extended the CCS to the Multistate Consecutively-Connected Systems (MCCS) whose components are not necessarily 2-state. 


In order to calculate the reliability of CCS and MCCS several algorithms have been introduced by Shanthikumar [5] and Zuo [6] and Hwang & Yao [1] correspondingly. Koutras [3] has introduced a unified framework for reliability structures which can be described by finite Markov chains called Markov Chain Imbeddable Reliability Structures. In this paper we prove that both MCCS and CCS can be described by finite Markov chains and by applying the general result of Koutras [3] we present exact formulas for their reliability. 
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	a Markov chain defined on S
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2. Reliability of CCS

The CCS consists of a source (0), n s-independent components 
[image: image15.wmf]{

}

n

,

,

2

,

1

K

 and a sink 
[image: image16.wmf](

)

1

n

+

. The source is connected to components 
[image: image17.wmf]{

}

0

k

,

,

2

,

1

K

 and components 
[image: image18.wmf](

)

n

j

1

j

£

£

 are connected to components 
[image: image19.wmf]{

}

m

,

,

2

j

,

1

j

K

+

+

 by arcs. That is to say, if the component 
[image: image20.wmf](

)

n

j

1

,

j

£

£

 functions it has direct access to the next 
[image: image21.wmf]j

k

 components. The source, the sink, and the arcs are perfect whereas the components have two states, functions or failed. The system functions iff there is a connection from the source to the sink through functioning components. Obviously CCS allows the modelling of systems in which different components have different transmitting capabilities. If 
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We consider the state space 
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For 
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(a) if 
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(b) if 
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and the reliability of the system is given by 
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EXAMPLE 1

Let us consider a CCS as sketched in Fig. 1 with transmitting capabilities 
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Figure 1

The state space of the system is 
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Then the reliability of the system is given by 
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3. Reliability of MCCS
Additional notations
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	a discrete random variable which describe the state of component i
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The MCCS consists of a source (0), n s-independent and multistate components 
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We consider the state space 
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and the reliability of the system is given by 
[image: image93.wmf]u

R

n

1

t

t

0

n

÷

÷

ø

ö

ç

ç

è

æ

L

p

¢

=

Õ

=

 where 
[image: image94.wmf])

0

,

0

,

1

,

0

,

0

(

0

¢

=

p

 and 
[image: image95.wmf])

0

,

1

,

1

,

1

,

1

(

u

¢

=

. 

EXAMPLE 2

Let us consider a MCCS as sketched in Fig. 1. The state space of the system is 
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Then the reliability of the system is given by 
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